- конормаль
- матем.конорма́ль
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
КОНОРМАЛЬ — термин, употребляемый в теории краевых задач для дифференциальных уравнений с частными производными. Пусть v=(v1, ... , vn ) внешняя нормаль в точке хк гладкой поверхности S, расположенной в евклидовом пространстве Е n с координатами х 1, . .., х … Математическая энциклопедия
ГРИНА ФОРМУЛЫ — формулы интегрального исчисления функций многих переменных, связывающие значения га кратного интеграла по области D n мерного евклидова пространства и кратного интеграла по кусочно гладкой границе этой области. Г. ф. получаются интегрированием по … Математическая энциклопедия
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… … Математическая энциклопедия
СМЕШАННАЯ И КРАЕВАЯ ЗАДАЧИ ДЛЯ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ И СИСТЕМ — задачи отыскания решений уравнений и систем с частными производными гиперболич. типа, удовлетворяющих на границе области их задания (или ее части) определенным условиям (см. Краевые условия, Начальные условия). Краевая задача для гиперболич.… … Математическая энциклопедия
СМЕШАННАЯ И КРАЕВАЯ ЗАДАЧИ ДЛЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ И СИСТЕМ — задачи отыскания решений и( х, t) = (u1(x, t),..., и т( х, t) в области Dевклидова пространства =(x1, . . ., х п, t) точка пространства ) параболич. системы уравнений или при m =1параболич. уравнения, удовлетворяющих нек рым дополнительным… … Математическая энциклопедия